Math 2A Quiz 1 Version 1 Fri Jan 15, 2016

NAME YOU ASKED TO BE CALLED IN CLASS:

SCORE: /30 POINTS

1. NO CALCULATORS OR NOTES ALLOWED

- . UNLESS STATED OTHERWISE, YOU MUST SIMPLIFY ALL ANSWERS
- 3. SHOW PROPER CALCULUS LEVEL WORK TO JUSTIFY YOUR ANSWERS

Consider the IVP $y' = 2y^2 - 3x$, y(1) = -2. Use Euler's method with h = 0.2 to estimate y(1.4).

SCORE: 4 /4 PTS

$$\frac{dy}{dx} = 2y^{2} - 3x$$

$$y(1.2) = y(1) + y' \cdot \Delta h$$

$$= -2 + (2x4 - 3) \times 0.2$$

$$= -2 + 1 = -1$$

$$y(1.4) = y(1.2) + y' \cdot \Delta h$$

$$= -1 + (2x1 - 3x1.2) \times 0.2$$

$$= -1 + (-1.6) \times 0.2$$

$$= -1 - 0.32 = -1.32$$

Determine if $y = A\sqrt{x} + \frac{B}{x^2} + \frac{x^2}{4}$ is a family of solutions of the DE $4x^2y'' + 10xy' - 4y = 5x^2$.

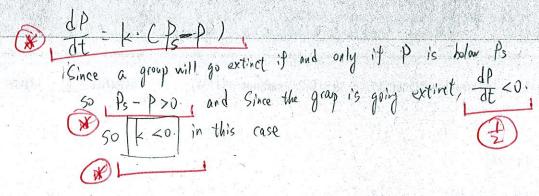
SCORE: 6/6 PTS

State your conclusion clearly.

$$y = Ax^{\frac{1}{2}} + B \cdot x^{-\frac{1}{2}} + \frac{1}{4}x^{\frac{1}{2}}$$

$$y' = -\frac{1}{4}Ax^{-\frac{1}{2}} - 2Bx^{\frac{3}{2}} + \frac{1}{2}x,$$

$$y'' = -\frac{1}{4}Ax^{-\frac{3}{2}} + 6Bx^{-\frac{1}{2}} + \frac{1}{2}x,$$


$$y'' = -\frac{1}{4}Ax^{-\frac{3}{2}} + \frac{1}{2}Bx^{-\frac{1}{2}} + \frac{1}{2}x,$$

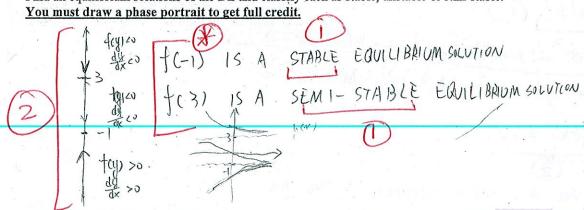
$$y'' = -\frac{1}{4}Ax^{-\frac{3}{2}} + \frac{1}{2}Bx^{-\frac{1}{2}} + \frac{1}{2}x,$$

$$y'' = -\frac{1}{4}Ax^{-\frac{3}{2}} + \frac{1}{2}x,$$

$$y'' = -\frac$$

In certain population models, a group will go extinct if and only if its population is below a certain level (called the SCORE: _____/4 PTS survival threshold P_S). Write a differential equation for the population of a group which is going extinct, if the rate of change of its population is proportional to the difference between the threshold and the existing population. <u>Justify your answer properly, but briefly.</u> NOTE: The signs of all constants should be stated clearly.

What does the Existence and Uniqueness Theorem tell you about possible solutions to the IVP


SCORE: _____/4 PTS

$$\frac{dy}{dx} = \frac{\sqrt[3]{y-2}}{x+6}, \quad y(8) = 2 ? \underline{\text{Justify your answer properly, but briefly.}}$$

Consider the autonomous DE $\frac{dy}{dx} = f(y)$, where f(y) is the function whose graph is shown on the right.

SCORE: ____/6 PTS

[a] Find all equilibrium solutions of the DE and classify each as stable, unstable or semi-stable.

If
$$y = m(x)$$
 is a solution of the DE such that $m(4) = 2$, what is $\lim_{x \to \infty} m(x)$?

[b]